Home > Profiles > Jian-Xun Wang

Jian-Xun Wang

Jian-Xun Wang

Email: jwang33@nd.edu

Phone: 000-000-0000

Office: Fitzpatrick Hall

Education

Postdoc, Mechanical Engineering, UC Berkeley, 2018

Ph.D., Aerospace Engineering, Virginia Tech, 2017

M.S., Ocean Engineering, Virginia Tech, 2016

M.S., Mechanical Engineering, Harbin Institute of Technology, 2013

B.S., Naval Architecture & Ocean Engineering, Harbin Institute of Technology, 2011

Biography

Dr. Jian-Xun Wang holds a Ph.D. degree in Aerospace Engineering and a Master degree in Ocean Engineering from Virginia Tech, USA. He also holds a master's degree in Mechanical Engineering and a bachelor's degree in Naval Architecture and Ocean Engineering from Harbin Institute of Technology (HIT), China.

Currently, he is working as a Postdoctoral Scholar at the University of California, Berkeley and he is also affiliated with the Dept. Aerospace and Mechanical Engineering at the University of Notre Dame. In 2018, he will join the Dept. of Aerospace and Mechanical Engineering at the University of Notre Dame as a Tenure-track Assistant Professor.

His current research focuses on data-enabled modeling (data assimilation, machine learning) and uncertainty quantification (UQ) in fluid mechanics and other physical applications.

Summary of Activities/Interests

Research Interests

Computational Fluid Dynamics, Turbulence, Inverse Problem, Data Assimilation, Machine Learning, Uncertainty Quantification.

Recent Publications

  • J.-X. Wang, T. Hui, H. Xiao, and R. Weiss. Inferring tsunami flow depth and flow speed from sediment deposits based on ensemble Kalman filtering. Geophysical Journal of International, 212 (1), 646-658, 2018. 
  • J.-X. Wang, J.-L. Wu, and H. Xiao. A Physics Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data. Physical Review Fluids. 2(3), 034603, 1-22, 2017. DOI: 10.1103/PhysRevFluids.2.034603. Also available at:arxiv: 1606.07987
  • J.-L. Wu, J.-X. Wang, H. Xiao, J. Ling. A Priori assessment of prediction confidence for data-driven turbulence modeling. Flow, Turbulence and Combustion. 99(1), 25-46, 2017. DOI: 10.1007/s10494-017-9807-0, Also available at: arxiv: 1607.04563
  • H. Tang, J.-X. Wang, R. Weiss and H. Xiao. TSUFLIND-EnKF inversion model applied to tsunami deposits for estimation of transient flow depth and speed with quantified uncertainties, Marine Geology, 2016, In press. DOI:10.1016/j.margeo.2016.11.009
  • H. Xiao, J.-X. Wang and Roger G. Gahnem. A Random Matrix Approach for Quantifying Model-Form Uncertainties in Turbulence Modeling. Computer Methods in Applied Mechanics and Engineering, 313, 941-965, 2017. DOI:10.1016/j.cma.2016.10.025
  • H. Xiao, J.-L. Wu, J.-X. Wang, R. Sun, and C. J. Roy. Quantifying and Reducing Model-Form Uncertainties in Reynolds Averaged Navier–Stokes Equations: An Data-Driven, Physics-Based, Bayesian Approach. Journal of Computational Physics, 324, 115-136, 2016. DOI:10.1016/j.jcp.2016.07.038
  • J.-X. Wang, R. Sun, H. Xiao. Quantification of Uncertainty in RANS Models: A Comparison of Physics-Based and Random Matrix Theoretic Approaches.  International Journal of Heat and Fluid Flow, 62 (B): 577-592, 2016. DOI: 10.1016/j.ijheatfluidflow.2016.07.005
  • J.-X. Wang, H. Xiao. Data-Driven CFD Modeling of Turbulent Flows Through Complex Structures. International Journal of Heat and Fluid Flow, 62 (B): 138-149, 2016. DOI: 10.1016/j.ijheatfluidflow.2016.11.007
  • J.-X. Wang, J.-L. Wu, and H. Xiao. Incorporating prior knowledge for quantifying and reducing model-form uncertainty in RANS simulations. International Journal of Uncertainty Quantification, 6 (2): 109-126, 2016. DOI: http://10.1615/Int.J.UncertaintyQuantification.2016015984, Also available at arxiv:1512.01750
  • J.-X. Wang, C. J. Roy and H. Xiao. Propagation of Input Uncertainty in Presence of Model-Form Uncertainty: A Multi-fidelity Approach for CFD Applications. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 4 (1), 01100, 2017. DOI: 10.1115/1.4037452. Also available at arxiv:1501.03189
  • H. Xiao, J.-X. Wang and P. Jenny. An Implicitly Consistent Formulation of a Dual-Mesh Hybrid LES/RANS Method. Communications in Computational Physics, 21(2) 2017. DOI: 10.4208/cicp.220715.150416a.
  • J.-L. Wu, J.-X. Wang, and H. Xiao. A Bayesian calibration-prediction method for reducing model-form uncertainties with application in RANS simulations. Flow, Turbulence and Combustion, 97, 761-786, DOI:10.1007/s10494-016-9725-6. Also available at:arxiv: 1510.06040
  • H. Xiao, J.-X. Wang and P. Jenny. Dynamic evaluation of mesh resolution and its application in hybrid LES/RANS methods.Flow, Turbulence and Combustion,93(1), 141-170, 2014. DOI: 10.1007/s10494-014-9541-9
  • G.-N. Chu, S. Yang, and J.-X. Wang. Mechanics condition of thin-walled tubular component with rib hydroforming. Transactions of Nonferrous Metals Society of China 22 (2012): s280-s286