Home > Highlights > Making the Most of Wind

Making the Most of Wind

AUTHOR: ND Staff

PUBLISHED: June 18, 2014

Professors Corke & Nelson
Professor Emeritus Robert C. Nelson and Clark Equipment Professor Thomas C. Corke, director of the Institute for Flow Physics and Control stand with plasma actuators developed at Notre Dame, on a section of a turbine blade.

Wind turbine blades (rotors) work in the same way as do airplane wings. The wind flowing over the blade produces lift. This makes a windmill turn, but wind turbulence can affect the performance of a turbine. If the wind is blowing smoothly, there are no problems. If the wind becomes unsteady, this not only affects the efficiency of a turbine (how much energy it is able to generate) but can also physically damage the turbine blades because of aerodynamic loads caused by the turbulence.

Researchers in the Institute for Flow Physics and Control — Clark Equipment Professor Thomas C. Corke, director of the center, and Professor Robert C. Nelson — are investigating distributed active flow control as a way to improve wind turbine performance. By placing plasma actuators, developed at Notre Dame, on a turbine blade, researchers can change the flow, and thus the aerodynamic load, of air around the blade in real time. This promotes continuous operation of a turbine at near optimal conditions in both steady and unsteady wind conditions, making the turbine more effective and more cost efficient. Other benefits of the actuators include that they are fully electronic with no moving parts, can withstand high-force loading, and can be laminated onto the blade surface.

Categories:  Energy Research

Filed under: